
SECURE IDENTITY VERIFICATION USING
CLOUD SERVICES AND FHE

Deep Inder Mohan

Master of Technology Thesis
June 2022

International Institute of Information Technology, Bangalore

SECURE IDENTITY VERIFICATION USING

CLOUD SERVICES AND FHE

Submitted to International Institute of Information Technology,
Bangalore

in Partial Fulfillment of
the Requirements for the Award of

Master of Technology

by

Deep Inder Mohan
IMT2017013

International Institute of Information Technology, Bangalore
June 2022

Dedicated to

My Family: Mom, Dad, and Veera

Thesis Certificate

This is to certify that the thesis titled Secure Identity Verification Using Cloud

Services and FHE submitted to the International Institute of Information Technology,

Bangalore, for the award of the degree of Master of Technology is a bona fide record

of the research work done by Deep Inder Mohan, IMT2017013, under my supervi-

sion. The contents of this thesis, in full or in parts, have not been submitted to any other

Institute or University for the award of any degree or diploma.

Prof. Srinivas Vivek

Bengaluru,

The 2nd of June, 2022.

iv

SECURE IDENTITY VERIFICATION USING CLOUD SERVICES AND FHE

Abstract

National digital identity verification systems have played a crucial role in the ef-

fective distribution of goods and services, particularly, in developing countries. Due to

the cost involved in deploying and maintaining such systems, combined with the lack

of in-house technical expertise, governments seek to outsource this service to third-

party cloud service providers to the extent possible. This leads to increased concerns

regarding individual users’ personal data privacy. In this work, we propose a practical

privacy-preserving digital identity verification protocol where the third-party cloud ser-

vices process encrypted identity data using an asymmetric fully homomorphic encryp-

tion (FHE) scheme such as BFV. Though the role of a trusted entity such as government

is not completely eliminated, our protocol significantly reduces the computation load

on such parties. We implement our protocol using the Microsoft SEAL FHE library

and demonstrate that the demographic and biometric matching queries and secure age

comparisons can be efficiently performed on batched FHE ciphertexts.

v

Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Srinivas Vivek, not

only for his guidance but also for his patience and support. I am extremely grateful to

Mr. Sanath V. and the entire MOSIP team for their trust and for funding this research.

I am deeply indebted to Prof. Shrisha Rao, who molded me into a better researcher by

blessing me with his guidance and wisdom. I am thankful to Prof. Ashish Choudhury,

who introduced me to the wonderful field of cryptography. I would also like to recog-

nize all the IIITB professors I have had the pleasure of being taught by, as their lessons

gave me the intellectual maturity needed to undertake this endeavor.

I could not have undertaken this journey without the help of my brother, Dr. Nitin-

der Mohan, who had the answer to every question I could ask. I would also like to

acknowledge all my friends whose confidence and belief in me gave me the strength to

persevere. Finally, I would like to thank my parents: my father, Dr. H. R. Verma, for

inspiring me to be a great researcher, and my mother, Baljit Kaur, for her constant love

and support.

vi

Contents

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables x

List of Abbreviations xi

1 Introduction 1

1.1 Problem Description . 1

1.2 Existing Approaches . 3

1.3 Our Contributions . 6

2 Homomorphic Encryption 8

2.1 What is Homomorphic Encryption? 8

2.2 Types of HE Schemes . 10

vii

2.3 SEAL: Simple Encrypted Arithmetic Library 11

3 System Architecture 12

3.1 System Architecture . 12

3.2 Need for TPS and CS . 14

3.3 User Data and Encryption . 17

4 System Functionality 19

4.1 Query Types and Algorithms . 19

4.1.1 Direct Demographic Data Comparison 19

4.1.2 Biometric Data - Threshold Comparison 21

4.1.3 Logic Gates With BFV . 24

4.1.4 Age Comparison . 26

4.2 Central Server - Query Agnostic Processing 34

5 Experiments and Results 36

6 System Security & Alternate Libraries 38

6.1 Security Guarantees . 38

6.1.1 Semi-honest setting . 38

6.1.2 Malicious Setting . 39

6.2 Leakage Analysis . 40

viii

6.2.1 Leakage at SP . 40

6.2.2 Leakage at TPS . 40

6.2.3 Leakage at CS . 41

6.3 Alternate Libraries . 45

6.3.1 Pallier Cryptosystem . 45

6.3.2 TFHE . 45

6.3.3 Palisade/HElib . 46

7 Conclusions 47

Bibliography 49

ix

List of Figures

FC3.1 Flowchart of system architecture. The blue text/arrows represent the

flow during initial user registration, and the black text/arrows repre-

sent the flow during query computation 13

x

List of Tables

TC3.1 Summary of the user data and the way it is stored in ciphertext. 17

TC5.1 Timing data of different query types at TPS and decryption at CS. In

the fingercodes implementation used, β is set to 3000. 36

xi

List of Abbreviations

2PC Two-Phase Commit Protocols

BFV Brakerski/Fan-Vercauteren

BGV Brakerski-Gentry-Vaikuntanathan

CKKS Cheon-Kim-Kim-Song

CRT Chinese Remainder Theorem

CS Central Server

FHE Fully Homomorphic Encryption

HE Homomorphic Encryption

IND-CPA Indistinguishable under Chosen Plaintext Attack

MB Megabyte

PHE Partially Homomorphic Encryption

SEAL Simple Encryption Arithmetic Library

SIMD Single Instruction, Multiple Data

SP Service Provider

SWHE Somewhat Homomorphic Encryption

TFHE Fast Homomorphic Encryption over the Torus

TPS Third-Party Server

1

CHAPTER 1

INTRODUCTION

1.1 Problem Description

A country’s identification (ID) system plays a critical role in the effective delivery

of public and private services. Governments are exploring the development of multi-

purpose foundational digital ID systems where individuals receive a unique identifier

that they can use for identity verification. Over the last decade, some developing na-

tions have pioneered their own digital identity verification systems, such as India with

AADHAR [1]. The success of these systems has brought to the forefront the impact that

national digital identity verification systems that use biometric verification can have on

empowering the poor and most vulnerable sections of society; from the distribution of

rations at subsidized rates to enabling adults to find employment through employment

guarantee schemes, etc. Digital identity verification systems can ensure transparent

and equitable distribution of the funds and benefits from government social welfare

programs and thus help the governments of developing economies utilize their scarce

development funds more effectively and efficiently. Systems such as AADHAR have

become strategic policy tools for social and financial inclusion, public sector delivery

reforms, managing fiscal budgets, increasing convenience, and promoting hassle-free

people-centric governance [1].

2

A nation deploying a digital ID system must spend considerable resources for its

design, deployment, and maintenance. Many developing countries may not be able to

afford the design of such systems from scratch. Motivated by these needs, the Modular

Open Source Identity Platform (MOSIP) project [2], anchored at IIIT Bangalore, as-

sists governments and other user organizations in implementing a digital, foundational

identity system in a cost-effective way. The Governments of Morocco, Philippines,

and Ethiopia have adopted this platform, and many countries across Asia, Africa, and

Latin America have expressed interest [3]. Currently, about 57 million users have been

enrolled in MOSIP-based systems [2].

To ensure the availability of ID services and to reduce the burden of maintenance

on central authorities, users’ demographic and biometric data are often outsourced to

third parties. The number of third-party cloud services involved depends on the usage

of the ID service by service providers and the latter could bear the cost of these cloud

services, thereby, making it economically viable for central authorities. However, this

leads to serious privacy concerns and potential misuse of personal data [4]. In this work,

we aim to provide a practical solution to the above privacy concern by making use of

fully homomorphic encryption to provide confidentiality to the demographic and the

biometric data outsourced to a Third-Party Server(s) (TPS).

We make use of a asymmetric-key word-wise FHE scheme such as BFV [5], and

we still need a (fully trusted) Central Server (CS) (e.g., the ID issuing authority) to de-

crypt the encrypted data. But, we significantly reduce the burden on CS by outsourcing

most of the computations on encrypted data to TPS. Although bit-wise FHE schemes

such as TFHE [6] can homomorphically evaluate Boolean operations much faster than

BGV/BFV, their storage requirements are a couple of orders of magnitude larger (> 150

MB per user record). This is due to the encryption of each bit of the plaintext data indi-

vidually, which becomes very expensive when the number of users runs into hundreds

of millions. Even in scenarios where the number of users is limited, this high ciphertext

3

expansion ratio makes it impractical to communicate ciphertexts over networks. On the

contrary, we make use of ciphertext packing in BFV and, hence, make judicial use of

the available plaintext space. While previous works have demonstrated that Partially

Homomorphic (PHE) schemes can provide secure and efficient demographic and bio-

metric matching [7, 8, 9, 10], our choice to go with FHE schemes is motivated by the

need to design a scalable system that can handle a large variety of queries in the future.

Our contributions are formally summarised in Section 1.3.

1.2 Existing Approaches

Homomorphic Encryption techniques have received wide-scale adoption in the cre-

ation of practical secure outsourced computation applications. HE based techniques

have been applied to achieve privacy-preserving set operations [11, 12, 13, 14] and

matrix operations [15, 16, 17]. They have also been successful in privacy-preserving

machine learning and data mining, with HE-based algorithms being developed for re-

gression [18, 19, 20] and classification [21, 22, 23, 24] tasks. HE-based approaches

also exist for more advanced applications, such as artificial neural networks [25, 26]

and secure image processing [27, 28, 29].

Although not in the context of national ID systems, many applications have used

homomorphic encryption techniques for the purposes of biometric authentication. In

[30], the authors provide a framework for the secure verification of multiple biometric

templates. Their approach involves the fusion of multiple biometric templates by ei-

ther concatenating each template vector or processing each template individually and

normalizing the individual scores. They use the Pallier cryptosystem [31] to encrypt

their templates and implement algorithms for both encrypted Euclidean distance and en-

crypted cosine similarity. Their scheme uses the fingercodes template and their secure

algorithm for fingerprint matching performs without penalty to the error rate. Although

4

their algorithm is fast, performing a comparison in only 0.5 ms with GPU acceleration,

their use of PHE makes this scheme unsuitable for our requirements. Furthermore, this

scheme requires the user’s collected biometric template to be sent to the server for veri-

fication in plain, which exposes the scheme to leakage attacks from honest-but-curious

adversaries.

In [32], they implement template quantization of the fingercodes template to achieve

a low-bandwidth privacy-preserving Pallier-based scheme. However, their per-comparison

time is > 4 seconds, making this protocol too slow for our task. In [33], the scheme

is created to target a similar privacy model to ours. They also parallelize the execu-

tion of their Euclidean distance algorithm to achieve faster multi-threaded performance.

However, their scheme requires multiple rounds of communication between the central

server and the third-party server, making it impractical for our objective of minimizing

CS involvement. Furthermore, their matching method execution time with 192-bits of

security and a polynomial modulus value of 8192 is 1.2 seconds. In the same settings,

our algorithm executes in about 0.3 seconds, making it nearly four times as fast.

In [34], the authors introduce GSHADE, a protocol for the privacy-preserving com-

putation of distance metrics such as Euclidean distance. This protocol works in the 2PC

setting and uses correlated Oblivious Transfer as a primitive to exchange information

between the client and server. This protocol is used in [35] to develop a biometric au-

thentication protocol. In this work, the authors develop a blinding technique to allow

the fingerprint data to be obscured from the authenticator. Blinding allows their appli-

cation to leverage incredibly fast distance computation from GSHADE for biometric

authentication. However, the privacy-preserving login procedure needed in this proto-

col is stateful and required 3 rounds of communication, making it impractical for our

task.

[36] presents a TFHE-based privacy-preserving fingerprint authentication system.

5

The authors implement arithmetic operations using logic gates to calculate Euclidean

distance values across fingercode vectors. Their algorithms offer similar performance

to ours, taking about 0.33 seconds per comparison. However, due to the use of TFHE,

their ciphertext expansion ratio is extreme (> 5000) and the size of each ciphertext is in

the order of megabytes. Since our system architecture requires all communication to be

encrypted, this makes this protocol impractical for online-based authentication systems.

In addition to privacy-preserving distance computation, certain existing works also

explore efficient HE-based comparison algorithms. In [37], the authors introduce a

polynomial rank sort algorithm for efficiently sorting ciphertexts encrypted with the

BGV [38] scheme. Their algorithm implements SIMD operations using the same CRT-

batching technique as our work. However, their algorithm has a high circuit depth

(> 10), and their comparison operations are too slow for real-time verification purposes.

In [39], the authors implement fast integer comparison algorithms for BGV and BFV

schemes. This result offers state-of-the-art performance for homomorphic comparison,

with their scheme taking only 11 milliseconds to compare two 64-bit integers. However,

the system uses a very specific integer representation which is not generalizable to other

comparison tasks.

The task of privacy-preserving identity matching has also been tackled in existing

research through various techniques. The OLYMPUS framework [40] implements a

privacy-preserving identity management framework which is complaint with the EU

GDPR. The primary technical contribution of this framework is to provide surveillance

protection against a malicious identity provider by distributing its role to several virtual

identity providers. The project, however, has been developed primarily for password-

based authentication, making their techniques inapplicable for our stateless framework.

In [41], the authors present a privacy-preserving biometric identification scheme

targeted toward IoT devices based on zero-knowledge proofs. Although the scheme is

6

theoretically proven to be perfectly complete and perfectly zero-knowledge, it requires

a large computation and communication overhead for each comparison, making it un-

suitable for practical deployment. A similar protocol is presented in [42] which uses

non-interactive zero-knowledge and permissioned blockchains. The zero-knowledge

prover in this protocol executes its proof in > 3 in the 128-bit security setting, making

it more than 10× slower that the protocol presented in this thesis.

In [43], the authors present BlindIdM, a privacy-preserving cloud-based framework

that achieves Identity Management as a Service (IDaaS). This scheme follows a similar

model to ours as it involves a semi-honest third-party which can blindly verify user

identity. The scheme is based on the Security Assertion Markup Language (SAML 2.0)

and requires multiple rounds of communication between the Service Provider (SP) and

the cloud-based third party for identity verification.

[44] presents a formal protocol for outsourced privacy-preserving biometric match-

ing using FHE. The protocol setup in this scheme is similar to the one presented in

this thesis, with the absence of a trusted central server. Furthermore, this protocol is

formally proved to be IND-CPA secure. However, the authors only create naive imple-

mentations of the comparisons, resulting in their algorithms requiring several minutes

per comparison when using the TFHE encryption scheme.

1.3 Our Contributions

In this thesis, we propose a practical privacy-preserving digital identity verifica-

tion protocol involving SP, CS, and TPS (see Figure FC3.1). Our protocol supports

the matching of encrypted demographic and biometric data. Only the hash of the con-

catenated user data is in the clear to allow quick indexing, by TPS, to locate his/her

encrypted data. Our protocol also supports private age comparisons as some services

can only be offered to users in a certain age range.

7

The main technical idea used in making our protocol efficient on the CS side is to

design an ”extended and query transparent” FHE decryption circuit that decrypts inter-

mediate encrypted values resulting from low multiplicative-depth circuit evaluation on

ciphertexts, thereby, outsourcing the rest of the computations to TPS or SP in a secure

manner (see Section 4.2). The extended part of the decryption circuit basically does the

necessary Boolean operations on plaintexts very efficiently. One of the advantages of

an extended decryption circuit being independent of the type of query is that it facil-

itates cheaper hardware implementation. To facilitate this query transparent extended

decryption, we propose a novel plaintext encoding mechanism, particularly, for the age

comparison query.

We have implemented our protocol using the Microsoft SEAL library [45]. The

ciphertext of each individual user’s data is only 0.864 MB (for 192-bit security level)

as we deploy FHE ciphertext batching and it takes at most 0.04 seconds of computing

time of TSP for demographic match queries, 0.3 seconds for age comparison queries,

and 0.3 seconds for the biometric match query. The computing time for CS is less than

5 milliseconds per query. The communication overhead is also very less due to the

small size of data. We will make our implementation code publicly available after due

approval.

The rest of this thesis is organized as follows: In Chapter 2, we give a brief descrip-

tion of Homomorphic Encryption and the different types of HE schemes. Chapter 3

goes over the proposed architecture for our system, giving detailed descriptions of each

party involved. In Chapter 4, we describe the algorithms for homomorphically process-

ing our query types, and give correctness proofs where necessary. Chapter 5 goes over

our implementation results and processing times, and we give a detailed description of

the scheme’s security in Chapter 6.

8

CHAPTER 2

HOMOMORPHIC ENCRYPTION

2.1 What is Homomorphic Encryption?

Homomorphic Encryption, or HE, is a cryptographic primitive through which it be-

comes possible to carry out binary or arithmetic operations over encrypted data without

needing to decrypt the data. Like other encryption schemes, HE schemes can also be

based on either the symmetric or asymmetric key paradigm. For the purpose of this

thesis, our focus will be on asymmetric HE schemes. These encryption schemes have

separate keys for encryption (public key pk) and decryption (secret key sk) operations.

However, both symmetric and asymmetric HE schemes can be used in both contexts, as

methods for transforming symmetric HE to asymmetric HE and vice-versa have already

been demonstrated in [46].

In general, asymmetric HE schemes can be said to involve the following operations:

• ParamGen(λ ,PT,K,B)→ params: This algorithm is used to instantiate the pa-

rameters for the HE scheme. Its inputs are:

– λ : This is the security parameter that determines the security level of the

scheme. For example, λ = 128 denotes 128-bits of security.

– PT : This denotes the plaintext space. Examples of PT for HE schemes are

9

Z (integers), Zp (integers modulo prime p) or extension rings/fields.

– K: This denotes the dimension of the encrypted vector. This only applies

if the scheme supports SIMD (Single Instruction, Multiple Data) operations

across vectors. For the BFV HE scheme, this value is determined by the

ciphertext modulus.

– B: This controls the complexity of the circuits that can be executed using

the HE scheme. Lower parameters support only smaller circuits or less com-

plex algorithms. This allows the ciphertexts to be smaller and the evaluation

to be more efficient, Higher parameters allow for computing more complex

functions/algorithms but come with increased ciphertext sizes and evaluation

times.

• KeyGen(params)→ pk,sk: For input parameters params, this function outputs a

public key pk and a secret key sk. Depending on the specific HE scheme, some

other keys such as evaluation key or a Galois key may also be generated.

• Encpk(m)→ c: For a plaintext message m, output its ciphertext encryption c.

• Decsk(c)→ m: For a ciphertext c, output its plaintext decryption m.

• Eval⋆(c1,c2)→ c⋆: An evaluation function for an operation ‘⋆’ that evaluates this

operation on the underlying plaintexts for two ciphertexts c1 and c2, and outputs

the corresponding ciphertext c⋆.

An asymmetric encryption scheme can be defined as being homomorphic over an

operation ‘⋆’ if the above functions satisfy the following equation:

Decsk

(
Eval⋆

(
Encpk(m1),Encpk(m2)

))
= m1 ⋆m2, ∀ m1,m2 ∈ PT

10

2.2 Types of HE Schemes

Homomorphic encryption schemes can be generally categorized to belong to one of

three types:

1. Partially Homomorphic Encryption (PHE): These schemes allow for the com-

putation of only one type of operation. However, these schemes allow this op-

eration to be performed an unlimited number of times without compromising

the accuracy of the ciphertexts. This operation can be integer addition, as the

schemes by Pallier [31] and Benaloh [47]; integer multiplication as the RSA [48]

and the El-Gamal [49] cryptosystems or binary addition as the public-key scheme

by Goldwasser and Micali [50].

2. Somewhat Homomorphic Encryption (SWHE): These schemes can allow mul-

tiple operations on the ciphertext, allowing the computation of more complex cir-

cuits. However, they come with the caveat of only being able to perform these

operations a limited number of times. The first SWHE scheme was the BGN

[51] scheme, which allows for the computation of unlimited additions, but only a

single multiplication operation on the ciphertexts.

3. Fully Homomorphic Encryption (FHE): FHE schemes support an unlimited

number of operations on ciphertexts, and these can be applied an unlimited num-

ber of times. Most schemes only support two operations on ciphertexts, such as

addition and multiplication. However, since every mathematical circuit can be

represented using only these two operations, it becomes possible to evaluate ev-

ery circuit with these schemes, making them fully homomorphic. The first FHE

scheme was achieved by Gentry in 2009 [52] for which he created an innovative

bootstrapping operation to preserve ciphertext sizes after multiplication. More

recently, advances in FHE schemes have made them viable tools for preventing

11

the leakage of sensitive data such as biomedical or financial data.

2.3 SEAL: Simple Encrypted Arithmetic Library

The Simple Encrypted Arithmetic Library, or SEAL, is a free and open-source soft-

ware library developed by Microsoft Research. MS SEAL implements the BFV and

CKKS FHE schemes. Due to being free, open-source, cross-platform, and without ex-

ternal dependencies, SEAL is the ideal library for applications involving FHE. This li-

brary also includes automatic parameter selection and noise estimator tools. This makes

SEAL easier to use than libraries such as HElib, which due to its low-level implemen-

tation requires sophisticated parameter selection.

The BFV scheme implements a fully homomorphic Ring-Learning With Errors

(RLWE) based cryptosystem. BFV is instantiated over two separate rings - a plaintext

ring and a ciphertext ring. This scheme supports addition and multiplication operations

over modular integer ciphertexts. Furthermore, the BFV scheme supports SIMD (Sin-

gle Instruction, Multiple Data) operations using a technique called CRT-batching [53].

Batching uses the Chinese Remainder Theorem to encode a vector of multiple plaintext

messages as a single plaintext. All homomorphic operations performed on the encryp-

tion of this batched plaintext reflect back to each individual plaintext. Therefore despite

the per-gate evaluation speed of BFV being slower than bitwise homomorphic schemes

such as TFHE, we can achieve fast amortized costs for our algorithms by batching and

parallel processing our inputs.

The CKKS scheme [54] allows for operations on encrypted real and complex num-

bers. Due to not having the algebraic constraints of BFV, CKKS ciphertexts can pack a

lot more data. This makes this scheme the most efficient in terms of amortized cost per

operation. However, the results yielded in this scheme are only approximate, making it

unsuitable for our application.

12

CHAPTER 3

SYSTEM ARCHITECTURE

In this section, we describe the overall architecture of our system, including all the

parties involved, their respective roles, and the format of data storage.

3.1 System Architecture

The following are the entities that are involved in our proposed system. Their roles

and relationships are also summarised in Figure FC3.1.

• User: The user is the owner of the demographic data. After the initial registration

process, the user will provide his demographic/biometric information to SPs for

identity verification and availing of various services.

• Service Providers (SP): These are entities that require identity verification for

providing a service. They can be government organizations, such as ration dis-

tribution centers and license & registration offices, or private companies such as

telecom or gas providers. They collect user data and generate queries on this data,

which in turn get forwarded to TPSs.

• Third-Party Servers (TPS): These are third-party servers that may be located

anywhere on earth. They provide storage and computation services to the system.

13

Fi
gu

re
FC

3.
1:

Fl
ow

ch
ar

to
fs

ys
te

m
ar

ch
ite

ct
ur

e.
T

he
bl

ue
te

xt
/a

rr
ow

s
re

pr
es

en
tt

he
flo

w
du

ri
ng

in
iti

al
us

er
re

gi
st

ra
tio

n,
an

d
th

e
bl

ac
k

te
xt

/a
rr

ow
s

re
pr

es
en

tt
he

flo
w

du
ri

ng
qu

er
y

co
m

pu
ta

tio
n

14

They receive the queries from SPs, fetch the appropriate user records and perform

computations on the encrypted data itself. They then send the output of these

encrypted computations to the government CS.

• Central Servers (CS): These are the secure servers that will be owned by the

governments of the nations deploying the ID system. Since the system uses the

public-key encryption paradigm, these are the only entities that will possess the

secret keys for our FHE algorithm, and hence will be the only point at which de-

cryption may be carried out. They will receive the encrypted query output from

TPS and perform an ”extended” decryption operation on it. They can then pass the

decrypted output through a deterministic circuit which will output if the query has

passed or failed. This result can then be forwarded to the SP that issued the query.

By making our post decryption computations deterministic and query agnostic,

these servers can be made very efficiently and will require minimal hardware in-

vestment to erect.

3.2 Need for TPS and CS

In the proposed architecture, the government-owned secure Central Server (CS) con-

tinues to be needed for processing every query. Even with the existence of Third-Party

Servers (TPS), the processing at CS continues to be linear in the number of queries.

This prompts the question - why use a TPS at all? Why not do all the processing at CS?

In addition to the security guarantees we achieve by having all communication between

parties be encrypted (see Chapter 6), the following reasons make it impractical for such

a system to be implemented without a TPS:

• In our proposed architecture, the job of storing and processing the data is handled

by the TPS, and that of decryption is handled by the CS. If a single server were to

15

be assigned all these tasks, it would need to be immensely powerful. This server

would need to be capable of handling hundreds of queries concurrently. The initial

investment that would be required by the governments to erect such a server would

be massive, in both the money spent and the time consumed. Since the proposed

architecture and system are specifically targeted at poorer economies, sustaining

such huge initial costs may put them off deploying this kind of system in the first

place.

• It may be hard for governments to accurately estimate the performance require-

ments of such a system. If they overestimate these requirements, they may pur-

chase expensive computing hardware that remains underutilized, making it a mas-

sive waste of computing resources and capital. If the performance requirements

are underestimated, it would result in a large capital requirement to retroactively

upgrade a system already in deployment.

• In addition to the initial capital required for purchasing and setting up the server

equipment, there would also be the need for regular maintenance and upkeep of

the hardware of such a system. This has two significant implications:

– The cost of maintaining and upgrading such a system may balloon over the

years. It would also require the governments to have constant access to

highly skilled personnel capable of diagnosing and fixing the problems with

such a system. This would cause such a system to be a constant drain on

the nation’s already limited resources, which may cause the governments to

abandon the project as a whole.

– In case the system hardware does need maintenance, the downtime of these

servers may cripple the provision of fundamental government services. For

such a digital ID verification system to become ubiquitous, governments

must ensure that its services are always available. Since a major use-case

of such a system would be the provision of government welfare schemes like

16

daily ration distribution, the system being down may not just be an inconve-

nience, but rather become perilous to human life.

Furthermore, there are certain advantages to using third-party servers from cloud

service providers. These are as follows:

• Ease and flexibility of deployment: Third-party cloud-based service providers

(such as Amazon Web Services) have servers specifically designed with ease

and flexibility in mind. It is incredibly convenient to set such servers up for

SaaS-based applications with the exact configuration of the operating system and

database type as needed. This can allow governments to save a fortune on set-up

costs in such a system.

• Cost-effectiveness and scalability: Third-party servers require you to pay only

for the computing resources that the application actually uses. This makes these

highly cost-effective, as computing resources practically never go to waste. These

servers are also constantly upgraded with state-of-the-art hardware, thus ensuring

that the application has the best possible performance. Furthermore, these services

also allow you to scale the available storage and computing resources based on

the demand for the application. This means that irrespective of the number of

concurrent query requests, these servers will never be overwhelmed.

• Reliability: Third-party servers can provide a much higher degree of reliability

than in-house servers. With the availability of backup servers to take over oper-

ations in case of any failure and 24/7 support for managing both hardware and

software issues, these servers allow for the consistent provision of service without

the need of purchasing redundant hardware.

17

Table TC3.1: Summary of the user data and the way it is stored in ciphertext.

Field Plaintext
Size (bytes) Vector Index Storage Format Size on

Disk at TPS (kB)
User ID 16 - Plaintext 0.016
Name 50 [0, 399]

Encrypted
Demographic
Data Vector

432

Gender 1 [400, 407]
Pincode 6 [408, 455]

Phone Number 13 [456, 559]
Email ID 20 [560, 799]

Date-of-birth 6 [800, 1599]

Biometric
Template

640 [0, 640]
Encrypted
Biometric

Data Vector
432

3.3 User Data and Encryption

User data collected during enrollment is of two types: demographic and biometric.

Demographic data includes a user name, date-of-birth, gender, email, phone number,

and pin code (see Table TC3.1), while the biometric data is the user’s fingerprint in-

formation stored as a fingercodes vector [55, 56]. The user will be issued a unique ID

number after enrollment.

In order to make computations on large ciphertexts more efficient, we use Batching,

a technique that is integrated into MS SEAL via the BatchEncoder class. Let N denote

the degree of the polynomial modulus and T denote the plaintext modulus. Batching

allows the BFV plaintext polynomials to be viewed as 2-by-(N/2) matrices, with each

element an integer modulo T . In the matrix view, encrypted operations act element-wise

on encrypted matrices, allowing us to obtain speeds-ups of several orders of magnitude

by making our computations fully vectorizable.

MS SEAL’s BFV implementation uses Gaussian noise to mask the plaintext, and

the noise variance grows with each multiplication. Hence each ciphertext has a noise

budget, which defines the total amount of noise each ciphertext can tolerate before it

18

loses its accuracy during decryption. The size of this noise budget varies with the SEAL

parameters, namely N and T . Since in BFV, noise is only introduced for multiplication

operations, we optimize the selection of our SEAL parameters based on the highest

multiplicative depth of the circuits we aim to evaluate on ciphertexts. In the proposed

system, N is set to 8192, and T is set to a 22-bit prime number. Our encrypted data

is thus stored as two batched vectors, one for demographic data and one for biometric

data. Each of these vectors is of size 8192. Table TC3.1 summarises the data attributes

stored for each user, its size in plaintext, and the corresponding vector indices. Note

that since most of both the plaintext and ciphertext vectors are empty, we can add data

for multiple fingerprints, or more detailed demographic data if needed without changing

the ciphertext sizes.

19

CHAPTER 4

SYSTEM FUNCTIONALITY

4.1 Query Types and Algorithms

The following are the types of queries that can be currently addressed in our system.

It is worth noting, however, that by using FHE, we can address new query types that

may arise without any changes to our encrypted data.

4.1.1 Direct Demographic Data Comparison

These are the queries that directly match the demographic data. Since a query only

passes on an exact match of data, these queries can be easily addressed with integer

arithmetic.

We store our demographic data in a single batch vector, where each index of the

vector stores 1 bit of data. SEAL operations of multiplication and vector rotation allow

us to isolate any part of this vector. So for instance, in the case of a query on the

comparison of a user’s pin code (which is stored in the index positions [408, 455] of the

batch vector), we can multiply the vector with the encryption of a vector of all 0’s except

in the index positions [408, 455], where it has a 1. Then on left-shifting the resulting

vector by 408 positions, we achieve the encryption of a vector having the pin code in

20

index [0, 47]. Let the vector created above be venc. Then the comparison algorithm

follows:

Algorithm 1 Demographic data matching algorithm

At Service Provider (SP)

Require: User data string s ▷ Data here can be any of the demographic fields.

1: procedure ENCODEDATA(s)

2: d← binary encoding of s

3: denc← Encpk(d)

4: denc is sent to the TPS as query data.

5: end procedure

At TPS

Require: User ID id, Encrypted input data vector denc, query type q

6: function COMPAREDEMOGRAPHIC(denc, id,q) ▷ Assume q is Email data

7: venc← encrypted demographic data vector corresponding to id from database

8: uenc← Encpk(⟨0,0, · · · ,1, · · · ,1,0, · · · ,0,⟩) ▷ Vector of all 0s, with 1s in the index
position [560,799], where the email
address is stored in Decsk(venc)

9: uenc← uenc× venc ▷ Isolating only the email data from venc

10: uenc←LeftShift(uenc,560) ▷ Shift encrypted email data from in-
dex [560,799] to index [0,239]

11: uenc← uenc−denc

12: Send uenc to CS.

13: end function

At CS

Require: uenc from TPS, secret-key sk

14: procedure CHECKOUTPUT(uenc) ▷ Procedure to check if query data was a match

21

15: u← Decsk(uenc)

16: if Index [0,400] of u are 0 then

17: return ”Query data match successful!”

18: else

19: return ”Query data match failed”

20: end if

21: end procedure

• At SP:Encode the input pincode in a vector, say u, in index positions [0, 47].

Encrypt this vector to generate uenc, and send uenc to TPS.

• At TPS: Calculate venc−uenc homomorphically. Send the output to CS.

• At CS: Check if the output vector is ⟨0,0,0, · · · ,0⟩. If yes, then send ”Query

Passed” message to SP.

Hence we can process the direct demographic matching queries with a circuit having a

0 multiplicative depth.

4.1.2 Biometric Data - Threshold Comparison

Currently, our system supports the comparison of fingerprints. We record the fin-

gerprint data as a fingercodes vector, which is a vector of size 640 bytes. This vector is

encoded as a batch vector with each vector element representing 1 byte of data.

The fingercodes comparison algorithm declares two fingerprints to be a match if the

Euclidean distance between their corresponding vectors is less than a certain threshold

β . Having access to addition, multiplication, and vector rotation, we can easily calculate

the Euclidean distance between two encrypted vectors in MS SEAL. In order to check

if the value is less than the threshold, we try to introduce a 0 at some index position in

22

the vector. The complete algorithm is described in Algorithm 2 and is summarised as

follows:

• At SP: Collect the fingerprint data from the user using some secure hardware.

Encode this as a fingercodes vector with the first 640 indices populated. Encrypt

this vector to obtain the input vector

• At TPS:

– Modify the vector venc using rotation and addition operations to a vector of

the form ⟨e,e+1,e+2, · · · ,e+β ,0,0, · · · ,0⟩.

– Create a vector u of the form ⟨β ,β , · · · ,β ⟩. Encrypt it to form uenc.

– Output the homomorphic subtraction venc−uenc to CS.

• At CS: We know that if e≤ β , then ∃x, such that x < β and e+x−β = 0. Hence

we can decrypt the vector received from TPS. If it contains a 0 on any of its index

positions, we send a “Query Passed” message to the SP.

Algorithm 2 Biometric data threshold comparison algorithm

At Service Provider (SP)

1: procedure ENCODEFINGERPRINTDATA

2: u← encoding of the user’s fingerprint data ▷ u here is a fingercodes vector with
the first 640 positions populated
with 1 byte of data each.

3: uenc← Encpk(u)

4: uenc is sent to the TPS as query data.

5: end procedure

At TPS

Require: User ID id, Encrypted biometric data vector uenc, query type q, threshold value β

23

6: function COMPAREBIOMETRIC(uenc, id,q) ▷ q here will be “Biometric”

7: venc← encrypted biometric data vector corresponding to id from database

8: procedure CALCULATEEUCLIDEANDISTANCE(uenc,venc)

9: eenc← uenc− venc

10: eenc← eenc× eenc

11: temp← eenc

12: i← 0

13: while (i < 640) do

14: temp← LeftShift(temp,1)

15: eenc← eenc + temp

16: i← i+1

17: end while

18: temp← Encpk(⟨1,0,0, · · · ,0⟩) ▷ Encryption of vector of all 0s except
at index position 0

19: eenc← eenc× temp ▷ eenc is now of the form
⟨ED,0,0, · · · ,0⟩, where ED is
the Euclidean distance.

20: end procedure

21:

22: procedure COMPARETHRESHOLD(eenc,β)

23: i← 0

24: temp← eenc

25: while (i≤ β) do

26: temp← RightShift(temp,1)

27: eenc← eenc + temp+ i

28: i← i+1

29: end while ▷ eenc is now of the form ⟨ED,ED +
1,ED + 2, · · · ,ED+β ,0,0, · · · ,0⟩

30: benc← Encpk(⟨β ,β , · · · ,β ⟩)

31: eenc← eenc−benc

32: return eenc

33: end procedure

24

34: end function

At CS

Require: eenc from TPS, secret-key sk

35: procedure CHECKOUTPUT(eenc) ▷ Procedure to check is query data was
a match

36: e← Decsk(eenc)

37: if e contains one 0 then

38: return ”Query data match successful!”

39: else

40: return ”Query data match failed”

41: end if

42: end procedure

Proof of correctness: As per the algorithm at TPS, after step 29, the encrypted

vector eenc will be of the form ⟨ED,ED+1,ED + 2, · · · ,ED+β ,0,0, · · · ,0⟩, where ED

is the Euclidean distance between our two biometric vectors. As per the fingercodes

algorithm, the two fingerprints may be declared a match if ED < β , where β is the

threshold value. We know that if ED < β , then (ED+ x)−β = 0, where x ∈ [0,β −1].

Hence in step 31, we try and introduce this 0 in our vector by calculating eenc− benc,

where benc is of the form ⟨β ,β , · · · ,β ⟩. The resulting vector will be ⟨ED− β ,ED+

1− β ,ED+ 2− β , · · · ,ED+ β − β , p− β , p− β , · · · , p− β ⟩, where p is the chosen

plaintext modulus. Since β is non-zero, p−β will also be non-zero. Therefore at CS,

if the vector contains a 0, then we know that ED < β .

4.1.3 Logic Gates With BFV

In order to execute our age comparison algorithm, we needed a method to homomor-

phically execute logic gates across batch vectors. The simplest solution to this would

25

be to set the plaintext modulus to 2 and then execute homomorphic addition and mul-

tiplication to carry out an OR gate and an AND gate respectively. However, since the

ciphertext noise budget is tied directly to the plaintext modulus, our plaintext modulus

is set as some 20-bit prime number to enable our ciphertexts to handle suitable multi-

plicative circuit depth. For our purposes, however, it is sufficient to design algorithms

for logic gates that assume that each index in the input vectors is set to either 0 or 1.

• AND gate: Assuming two batch vectors have each of their elements as either 0

or 1, the product of these vectors will also have each element as either 0 or 1, and

will be equivalent to the AND of the corresponding indices:

u = ⟨1,0,0,1,0,1,1,0, · · · ⟩

v = ⟨0,1,0,0,1,1,0,0, · · · ⟩

w = u× v = ⟨0,0,0,0,0,1,0,0 · · · ⟩

Here, wi = ui∧ vi

Hence the multiplicative depth of an AND gate is 1. Note that the same approach

will not work for the OR gate with addition. Since the plaintext modulus isn’t 2,

1+1 = 2 ̸= 1∨1.

• NOT gate: Given an encrypted batch vector with each of its indices set to 0 or 1

(say u), we use Algorithm 3 to invert the values at its indices:-

Correctness: Suppose u is set to ⟨1,0,0,1,0⟩. We first create v1 as ⟨p− 1, p−

1, · · · ⟩, which is equivalent to the vector ⟨−1,−1,−1,−1,−1⟩ (since every vector

element is mod p). Now, u×v1 will be the same binary sequence as u except with

every 1 set to -1, i.e., u× v1 = ⟨−1,0,0,−1,0⟩. If we add 1 to every element in

this product, all indices containing −1 will become 0, and all indices with 0 will

become 1. Hence, given v2 = ⟨1,1,1,1,1⟩, (u× v1)+ v2 = ⟨0,1,1,0,1⟩= u.

Hence NOT can be evaluated with a circuit having 1 multiplicative depth.

26

Algorithm 3 Homomorphic NOT gate

Require: Input vector u (Encrypted batch vector), public key pk

1: procedure NOT(u)

2: v1← Encpk(⟨p−1, p−1, · · · , p−1⟩) ▷ p is the chosen plaintext modulus

3: v2← Encpk(⟨1,1, · · · ,1⟩)

4: u← u× v1

5: u← u+ v2

6: return u is NOT(u)

7: end procedure

• OR and XOR gate: Having access to both AND and NOT, we have effectively

created a NAND gate, which is a universal logic gate. Therefore, we can simulate

OR and XOR gates using the following, well-known logic circuits:

v1∨ v2 = v1∧ v2

v1⊕ v2 = (v1∨ v2)∧ v1∧ v2

Hence we can homomorphically evaluate the OR and the XOR gate on SEAL’s

BFV batched ciphertexts using circuits having multiplicative depths 3 and 4 re-

spectively.

4.1.4 Age Comparison

Many government and private applications require age verification. We need our

system to be able to answer queries of the form ”Is the user above the age of 18?”

or ”Is the user below the age of 65?” homomorphically. This requires us to create

a comparison algorithm, which is especially challenging with BFV since it supports

only modular arithmetic. We formulate these query types in a more generic manner as

follows:

27

Given 2 date-of-births d1 and d2, can we encode them as vectors and per-

form a set of operations on these vectors such that the resulting vector has

properties that only hold when d1 comes before d2?

Our solution to this problem requires the use of logic gates on batch vectors. Given

two encrypted batch vectors v1 and v2 such that each element of these vectors is either

0 or 1, we want to evaluate logic gates such as AND and OR on these binary sequences.

The implementation details of these logic gates using BFV are given in Section 4.1.3.

Given an encrypted binary vector v, our algorithm for computing v̄ is as follows:

− Calculate the encoding and encryption of a vector, say u with each of its elements

being T − 1 (T is the plaintext modulus), i.e., u = Enc(⟨T − 1,T − 1, · · · ,T −

1⟩). Since BVF operates in modular arithmetic, this is equivalent to having each

element set to -1.

− Calculate the encoding and encryption of a vector, say w with each of its elements

being 1, i.e., w = Enc(⟨1,1,1, · · · ,1⟩).

− Calculate w+(u× v) homomorphically. This is the required encrypted vector v̄.

Now we explain how the date-of-birth data is encoded as a vector:

• We pick a pivot date of 1 Jan 1900. Each date-of-birth is then expressed as the

distance from this pivot in years and days. For instance, the date 6 April 1999,

can be thought of as being 99 years after 1900, and 96 days after 1 Jan. So it can

be expressed as the number 099-096. In this way, every date can be expressed as

the number of years from 1900, y, and the number of days from 1 Jan, d.

• In our date-of-birth vector, we use 800 index positions to store this date. Of these,

[0, 399] indices contain y encoded in unary, and [400, 799] indices are the vector

28

⟨d,d + 1,d + 2, · · · ,d + 399⟩. For instance, 6 April, 1999 is encoded in these

indices as as:

⟨1,1,1, · · · ,1︸ ︷︷ ︸
upto index 98

, 0,0, · · · ,0︸ ︷︷ ︸
upto index 399

,96,97,98, · · · ,495⟩

(Note that the above mentioned “date-of-birth vector” is not stored as a separate ci-

phertext vector, but is instead just a part of the demographic data vector in the index

positions [800, 1599].)

During query execution, we can isolate each of the two parts of this encrypted vector

using a similar technique to direct demographic comparison. We create vectors yenc and

denc such that:

yenc = Enc(⟨1,1,1, · · · ,1,0,0, · · · ,0⟩)

denc = Enc(⟨96,97,98, · · · ,494,495⟩)

To compare this date-of-birth to some input date-of-birth dob, we create the correspond-

ing vectors y′enc and d′enc for this date-of-birth. Here, y′enc is created similar to yenc, but

d′enc does not increment as in denc, i.e., if the number of days from 1 Jan for the input

date-of-birth are x, then d′enc is constructed as Enc(⟨x,x,x, · · · ,x⟩). The comparison

algorithm is described in detail in Algorithm 4.

29

Algorithm 4 Date-of-birth comparison algorithm

At Service Provider (SP)

Require: User date-of-birth dob

1: procedure ENCODEDATEOFBIRTH(dob)

2: y← no. of years from 1900 in dob

3: d← no. of days from 1 Jan in dob

4: y′enc← Encpk(⟨1,1,1, · · · ,1,0,0, · · · ,0⟩) ▷ y no. of 1s, followed by all 0s
upto index 400

5: d′enc← Encpk(⟨d,d,d, · · · ,d⟩) ▷ Vector of all ds upto index 400

6: y′enc and d′enc are sent to TPS as query data.

7: end procedure

At TPS

Require: User ID id, y′enc and d′enc from SP.

8: function COMPAREDATEOFBIRTH(id,y′enc,d
′
enc)

9: demoenc← encrypted demographic data vector corresponding to id from database

10: ▷ The year and date in demoenc are
stored in indices [800,1199] and
[1200,1599] respectively.

11: yenc← ⟨0,0, · · · ,0, 1,1, · · · ,1,︸ ︷︷ ︸
index [800, 1199]

0, · · · ,0⟩

12: denc← ⟨0,0, · · · ,0, 1,1, · · · ,1,︸ ︷︷ ︸
index [1200, 1599]

0, · · · ,0⟩

13: yenc← LeftShift(demoenc× yenc,800)

14: denc← LeftShift(demoenc×denc,1200)

15:

16: temp1← yenc∧ (yenc⊕ y′enc) ▷ All logic gates used are homomor-
phic and element-wise across vec-
tors

17: temp2← (d′enc−denc)× (yenc⊕ y′enc)∧ y′enc

18: temp2← RightShift(temp2,400)

19: outenc← temp1 + temp2

30

20: return outenc to CS

21: end function

At CS

Require: outenc from TPS, secret-key sk

22: procedure CHECKOUTPUT(eenc) ▷ Procedure to check if input DoB lies after user’s DoB

in the database

23: out← Decsk(outenc)

24: if Index [0,399] of out are all 0s and index [400,799] of out contain st least one 0 then

25: return ”Input DoB lies after the user’s DoB”

26: else

27: return ”Input DoB lies before the user’s DoB”

28: end if

29: end procedure

Correctness: Let y and d be the values of the distance from the year and date

pivots for the user’s DoB, and y′ and d′ be these distances for the input DoB. Let

yenc,denc,y′enc,d
′
enc be the corresponding excrypted vector encodings of these values as

used in Algorithm 3. We can break-up the functionality of our algorithm into 4 cases.

• Case 1: y > y′

Let the user’s date of birth on record is 6th April, 1999. In the representation

method for Algorithm 4, y = 99 and d = 96 (99 years from 1900, 96 days from 1

Jan). Hence the vectors yenc and denc will be:-

yenc = Encpk(⟨1,1, · · · ,1︸ ︷︷ ︸
Index [0, 98]

, 0,0, · · · ,0︸ ︷︷ ︸
Index [99, 399]

⟩)

denc = Encpk(⟨96,97,98, · · · ,495⟩)

31

Now suppose the input date of birth to be compared is 2nd February, 1994. Hence

y′ = 94 and d′ = 33. As per lines 4 and 5 of Algorithm 4, y′enc and d′enc are:-

y′enc = Encpk(⟨1,1, · · · ,1︸ ︷︷ ︸
Index [0, 93]

, 0,0, · · · ,0︸ ︷︷ ︸
Index [94, 399]

⟩)

d′enc = Encpk(⟨33,33,33, · · · ,33⟩)

As per algorithm line 16, the vector temp1 contains 1s if vector y has more 1s than

the vector y′. In other words, the first 400 index positions of the output vector

contain a non-zero index only if the input DoB comes before the user’s DoB. In

the example values above, the value of temp1 will be:

temp1 = yenc∧ (yenc⊕ y′enc) = Encpk(⟨0,0, · · · ,0︸ ︷︷ ︸
Index [0, 93]

,1,1,1,1,1, 0,0, · · · ,0︸ ︷︷ ︸
Index [99, 399]

⟩)

Since the first 400 index positions will not be 0s, as per line 24 of the algorithm,

the output will declare input DoB to come before the user’s DoB. Hence due to

the check on temp1, the algorithm works correctly in all cases when y > y′.

• Case 2: y = y and d > d′

When y and y′ are equal, yenc and y′enc will be the same vector. Hence yenc⊕y′enc =

⟨0,0, · · · ,0⟩. Suppose the user’s DoB is 6th April, 1999 and the input DoB is 3rd

February, 1999. Then d and d′ will be the same as in case 1.

Since y = y′, the value of (yenc⊕ y′enc)∧ y′enc will be ⟨1,1, · · · ,1⟩. The value of

the vector temp2 will therefore be the same as d′enc−denc as per algorithm line 17.

We know that if d > d′, then d′− (d + i) will be non-zero for all positive integers

i. Hence none of the indices of the vector d′enc−denc will be zero. As per line 24

of the algorithm, the output will therefore be correct in all cases when y = y′ and

d > d′

• Case 3: y = y′ and d < d′

32

As discussed in Case 2, yenc⊕y′enc will be zero, and the output will be determined

by temp2 = d′enc− denc. Let the user’s DoB is 3rd February, 1999 and the input

DoB is 6th April, 1999. Then the values of denc and d′enc will be the opposite of

their values in cases 1 and 2, i.e.,

denc = ⟨33,34,35, · · · ,432⟩

d′enc = ⟨96,96,96, · · · ,96⟩

We know that if d < d′, then ∃ i≥ 0 such that d′− (d+ i) = 0. Also, i will also be

smaller than the maximum possible value of d′. The vector denc encodes the value

d+ i in each of its indices, with 0≤ i< 400. Since the maximum possible distance

any date can have from 1 Jan is 365 (number of days in a year) and 365 < 400, we

know that exactly one index of the vector d′enc−denc will contain a 0 when d < d′.

As per line 24 of the algorithm, the first 400 indices of the output vector will be all

0s (y = y′), and the next 400 indices will contain at least one 0. The algorithm will

declare the user’s DoB to lie before the input DoB. Hence the algorithm output is

correct in all cases when y = y′ and d < d′.

• Case 4: y < y′ Let the user’s DoB on record is in the year 1994, and the input

DoB is in the year 1999. Then y = 94 and y′ = 99. The value of the encrypted

vectors will then be:

yenc = Encpk(⟨1,1, · · · ,1︸ ︷︷ ︸
Index [0, 93]

, 0,0, · · · ,0︸ ︷︷ ︸
Index [94, 399]

⟩)

y′enc = Encpk(⟨1,1, · · · ,1︸ ︷︷ ︸
Index [0, 98]

, 0,0, · · · ,0︸ ︷︷ ︸
Index [99, 399]

⟩)

Since y ̸= y′, as in Case 1, yenc⊕ y′enc will contain 1s in the index positions [94,

98]. However since the extra 1s are in y′enc, temp1 as per line 16 of the algorithm

33

will be:

temp1 = yenc∧ (yenc⊕ y′enc) = Encpk(⟨0,0,0, · · · ,0,0⟩)

In cases 2 and 3, the value of temp2 has been independent of y′enc∧ (yenc⊕ y′enc),

since this has been a vector of all 1s. However in this case, since the number of

1s in yenc is less than the number of 1s in y′enc, this vector will be of the form:

y′enc∧ (yenc⊕ y′enc) = Encpk(⟨1,1, · · · ,1︸ ︷︷ ︸
Index [0,93]

,0,0,0,0,0, 1,1, · · · ,1︸ ︷︷ ︸
Index [99, 399]

⟩)

Due to this, as per line 17 of our algorithm, the value of the second half of the

output vector will be:

temp2 = (d′enc−denc)× y′enc∧ (yenc⊕ y′enc)

= Encpk(⟨X ,X , · · · ,X︸ ︷︷ ︸
Index [0,93]

,0,0,0,0,0,X ,X , · · · ,X︸ ︷︷ ︸
Index [99, 399]

⟩)

Here, X is the value of that index in the vector d′enc− denc, which may of may

not be 0. By multiplying this vector by y′enc∧ (yenc⊕ y′enc), we introduce 0s in

the second half of our output vector whenever y < y′. Therefore, irrespective of

the values of d and d′, the output vector will contain at least one 0 in the index

positions [400, 799] every time y < y′. As per line 24 of the algorithm, the output

will be correct in all cases when y < y′.

The above-described cases document algorithm 4’s behavior for all possible values

of y,d,y′ and d′. Hence algorithm 4 is correct.

34

4.2 Central Server - Query Agnostic Processing

In all the algorithms described above, at the Central Server, processing involves de-

cryption of the TPS output followed by simple vector comparison logic. By simple

manipulations on the TPS output for our algorithms, we can make this vector compari-

son logic completely query agnostic. This means that the CS would be able to determine

the query pass/fail status by executing a deterministic comparison circuit on TPS output

independent of query type and data. This would allow the CS to simply carry out an

extended decryption circuit for each query, making it an O(1) process at CS for each

query.

To recap the CS query PASS condition for each algorithm, given v is the decrypted

vector output from TPS:

• Demographic Comparison: Query PASS if index [0, 399] of v are all 0s.

• Biometric Comparison: Query PASS if index [0, β −1] of v contain at least one

0 (β here is the fingercodes threshold).

• Date-of-birth Comparison: Query PASS if index [0, 399] of v are all 0s, and

index [400, 799] contain at least one 0. (Note: PASS case here is the input DoB

lying after the user’s DoB)

In the configuration of MS SEAL used in this project, the size of each vector is

4096, and the size of the fingercodes threshold β is 3000. Therefore, we can carry out

homomorphic operations at TPS on the final vector venc to create a modified vector v′enc

for each algorithm as follows:

• Demographic Comparison: v′enc = venc×Encpk(⟨ 1,1, · · · ,1︸ ︷︷ ︸
Index [0, 399]

, 0,0, · · · ,0︸ ︷︷ ︸
Index [400, 400+β]

⟩)

35

• Biometric Comparison: v′enc = RightShift(venc,400)

• Date-of-birth Comparison: v′enc = venc +Encpk(⟨ 0,0, · · · ,0︸ ︷︷ ︸
Index [0, 799]

, 1,1, · · · ,1︸ ︷︷ ︸
Index [800, 400 + β]

⟩)

By performing these computations at TPS before sending the final vector (now v′)

to CS, the following check can be used for all query types at CS:

If index [0, 400] of v′ are all 0s and index [400, 400+β] contain at least one

0, query PASS. Else query FAIL.

Using the above-stated logic at CS will correctly determine the query output for all

query types. This can allow us to make the processing at CS very efficient.

36

CHAPTER 5

EXPERIMENTS AND RESULTS

As described in Section 3.3, we choose our polynomial modulus T as 8192, and

our plaintext modulus N as a 22-bit prime. This allows us to encode each ciphertext

as a SIMD vector of size 4096, with each SIMD slot being mod(22-bit prime). SEAL

automatically picks the remaining parameters to achieve 192-bit security by default,

which can be changed to 128-bit or 256-bit as needed. The third-party server uses <

1MB of storage for each user’s data. Each message sent from SP to TPS, and from

TPS to CS is a ciphertext of size 432 kB. For these experiments, we do not provide any

estimates based on expected network latency.

Table TC5.1: Timing data of different query types at TPS and decryption at CS. In the finger-
codes implementation used, β is set to 3000.

Operation Multiplicative
Depth

No. of
Rotations

No. of
Additions

Time
(milliseconds)

CS: decryption - - - 4.66
Name match

1

1

1

22.82
Gender match

2

35.39
Pincode match 40.83

Phone Number match 35.36
Email ID match 35.17

Date-of-birth
comparison

7 3 6 217.73

Biometric
Template comparison

3
⌈log2(640)⌉
+⌈log2(β)⌉

⌈log2(640)⌉
+⌈log2(β)⌉+2

286.74

37

In our biometric comparison algorithm, we implement further optimizations to greatly

speed up the algorithm. In the loops at lines 13 and 25 of Algorithm 2, we use the ‘fast

exponentiation’ trick to complete the loop operations in ⌈log2(640)⌉ and ⌈log2(β)⌉

steps respectively.

We run our experiments on a laptop with an Intel i7-7700HQ processor running at

2.8 GHz. All operations are run as single-threaded tasks. For our experiments, we

execute each query 1000 times and use the C++ chrono class to collect timing data

in microseconds. The average time taken over 1000 iterations for each query is sum-

marised in Table TC5.1.

As the results indicate, our most compute-intensive query takes < 0.3 to execute,

making it perfectly feasible for real-world deployment. We can expect a further speedup

in these timings by using Intel’s Homomorphic Encryption Acceleration Library (HEXL)

[57] along with an AVX512-IFMA52 compatible processor.

38

CHAPTER 6

SYSTEM SECURITY & ALTERNATE LIBRARIES

In the security analysis of this scheme, the Central Server (CS) is assumed to be fully

trusted. It is still preferable for CS to maintain a backup of user data in encrypted form

to safeguard against malware attacks (though there could still be leakage during decryp-

tion). We can provably claim that our system will have all the same security guarantees

as the underlying HE scheme exclusively in the case of an honest-but-curious adver-

sary controlling only the TPS. The TPS and SPs are assumed to be honest-but-curious

and they both could collude. The hash function used needs to be collision resistant and

pre-image resistant. By making the decryption of intermediate computations available

to only the CS, our system is resistant to large-scale leakage analysis attacks. The SP

would learn only the result of the ID verification. Because the hash of the user data is

available to TSP for efficient indexing, it will only be able to track that some unknown

user underwent ID verification using the recorded set of queries at the recorded times.

6.1 Security Guarantees

6.1.1 Semi-honest setting

As stated above, our system offers the same security guarantees as the underlying

BFV scheme against an honest-but-curious TPS. This is because the TPS only has ac-

39

cess to encrypted data, and never gets to see the data in plaintext. Even as a semi-honest

adversary, we cannot make any claims for security against SP as the user data may be

prevented to the SP as plaintext. There are workarounds to prevent this, which can

include using secure collection hardware that immediately encrypts data on collection.

However, these methods are beyond the scope of the thesis. Furthermore, with minor

modifications, this scheme can be made secure in the semi-honest setting if the role of

the trusted central server is taken over by another third party. To ensure this, however,

it is necessary that this party is unable to collude with the TPS. Even if this untrusted

central server is able to collude with a semi-honest SP, the scheme can continue to be

secure. By storing the encrypted user data exclusively at the TPS, we can isolate the

user data and the secret key. In this setting, the third-party ‘central’ server would only

have access to the decrypted TPS output.

In this setting, however, it becomes possible for the adversary to know both the

input query data, as well as the decrypted TPS output. With the current algorithmic

implementations, this enables the adversary to carry out leakage attacks which may

reveal user data in plain. The nature of these attacks and the techniques that may be

used to prevent them are discussed in section 6.2.3. Furthermore, there are multiple

other challenges that can come about by handing over the secret key to a potentially

untrusted adversary, which is why this architecture is not the recommended setup.

6.1.2 Malicious Setting

In the current setup, we do not make any security guarantees for our model in the

malicious setting. It may always be possible for a malicious adversary controlling any

one of the three involved parties to determine the private data of a particular citizen. A

simple extension to our scheme can be implementing a timeout based on the number of

queries issued against a specific user hash (ID). This can allow the system to be secure

40

against large-scale inference attacks, even in the malicious adversary setting.

6.2 Leakage Analysis

In this section, we discuss the types of breaches and leakages that can occur for each

involved party and their implications. We also discuss methods to mitigate the danger

from these leakages where possible.

6.2.1 Leakage at SP

The data collected at every SP is in plaintext and is susceptible to a leakage attack.

The data a user provides for identity verification to SP may be intercepted by some

adversary who is able to breach the SP. In this case, however, the data breached is

limited to only the information provided by the user. The actual user data on record,

as well as the data of all the other users, remains safe from leakage. The only way this

kind of attack may be mitigated is by using secure collection hardware at SP, which

encrypts the data immediately after collection. An example of such a device may be a

biometric collection device with an in-built encryption circuit.

6.2.2 Leakage at TPS

All the data at TPS, including the query data from SP and the user data from the

database, is fully encrypted, and hence, secure from leakage attacks. This is strictly

necessary as, in ideal system functionality, the entire verification process should con-

tinue to remain secure even if TPS is an honest-but-curious adversary. Hence by using

FHE, our system makes it impossible for a data breach to occur from the TPS.

41

6.2.3 Leakage at CS

There are two main possible data leaks that may take place at the CS:

1. Secret key leak: This is the most critical data held at CS. If the secret key is

leaked, the adversary gets the ability to decrypt and view in plain any user’s demo-

graphic and biometric data. The only protection in the case of secret key leakage

stems from the fact that the encrypted database is not held by the CS, only by the

TPS. Therefore in order to completely breach the system, the adversary needs to

breach not only the CS but also the TPS. In case the adversary cannot breach the

TPS, and only has access to the TPS output message to CS after query processing,

then it will be able to view the TPS output in plain for each query. This will have

the exact same implications as the next type of leak.

2. Leakage of decryption of TPS output: Since the primary job of CS is to decrypt

the TPS output, this decrypted output may also be leaked to an adversary in case of

a breach at CS. Depending on the query type, this may have different implications:

(a) Direct demographic matching queries: Since we use rudimentary opera-

tions to determine if the demographic data is a match, if an adversary can

find out the query data from the SP, as well as the plaintext decryption of

TPS output from CS, it would be possible for this adversary to recover the

user’s demographic details. For instance, for checking if a user’s name is a

match, the TPS operation is:

TPS output= query data−user data

Hence an adversary knowing the TPS output and the query data in plain

can easily determine the user data.

A possible way to mitigate this attack is to follow up the subtraction oper-

42

ation at TPS with some additional operations. The following are the best

attack mitigation strategies that can be implemented at TPS:

• Random vector multiplication: In this strategy, we multiply the final en-

crypted vector with some random vector at TPS before sending it to CS.

TPP can generate an encrypted vector of the form Encpk(⟨r1,r2, · · · ,r4096⟩),

where ri ∈random [0, p− 1]. Here p is the plaintext modulus. Since our

query PASS/FAIL decision making happens only on the basis of the

presence of 0s in the output vector, this strategy does not impact query

output. By multiplying with a random vector, we can ensure that there is

no information leaked from the non-zero indices of the plaintext vector

at CS.

• Rotate-and-add: The following ‘rotate-and-add’ strategy can be used to

prevent data leakage, specifically for demographic data -

Require: Encrypted TPS output vector v

// Operations at TPS

for k iterations do

v′ = Copy(v)

r← generateRandomNumber()

v← RightShift(v,r)

v← v+ v′

end for

Since the average time cost of one rotation operation is 5 ms and one

addition operation is 6 ms in MS SEAL, these operations together re-

peated k times will add 11k ms to the query processing time. k here can

be as large as needed since neither addition nor rotation consume our

ciphertext noise budget and can be repeated indefinitely.

Proof of Correctness: Since the query passes only in the case when the

vector output is all 0s, performing any number of rotate-and-add opera-

43

tions on a PASS vector will not change this vector. However, in a query

fail vector, the location of the 0s in this vector indicates partial matches

between the query input name and the name on record. However, by

rotate-and-add operations, these positions will instead get populated by

the values in other index positions, and will no longer remain decipher-

able.

(b) Biometric data comparison queries: In the process of the biometric data

comparison algorithm, we calculate the Euclidean distance between the in-

put biometric vector and the template biometric vector. The output vector

indicates a comparison between this Euclidean distance and the threshold

value. If this output vector is leaked, the adversary may be able to determine

this Euclidean distance.

One possible mitigation strategy for this attack can be for the TPS to ran-

domise the encrypted vector eenc during its generation in line 27 of Algorithm

2. Instead of generating an ordered vector of the form ⟨ED,ED+ 1,ED+

2, · · · ,ED+β ,0,0, · · · ,0⟩, the TPS generates a permuted version of this vec-

tor: ⟨ED+r1,ED+r2,ED+r3, · · · ,ED+rβ ,0,0, · · · ,0⟩, where r1,r2, · · · ,rβ

are values picked uniformly randomly and without repetition from the range

[0,β]. This vector will continue to maintain the correctness property of our

algorithm, i.e., it will contain a 0 iff ED ≤ β . However, due to the random-

ness of the vector, the index position of this 0 reveals no information to the

adversary about the value of the Euclidean distance.

(c) Age data comparison queries: As we know from Algorithm 3, the output

vector for age queries is composed of two vectors, temp1 and temp2.

• temp1: This vector has the same number of 1s as the difference y−y′, if

y− y′ > 0, and is all 0s otherwise (see Algorithm 3 line 16). Therefore,

if this vector is leaked, it may reveal the exact year of birth of the user.

44

Since query output from this vector may be the PASS case only when

it is all 0s, we can use the same rotate-and-add strategy as in the direct

demographic matching case to hide the contents of this vector. If the

initial vector has n non-zero indices, by performing k rotate-and-add op-

erations, the number of non-zero indices will be in the range [n,n×2k].

These non-zero indices may be further obfuscated by using the random

multiplication strategy as described above.

• temp2: This vector may have two types of values:

– In the case when y ≤ y′, this vector indicates by the presence of a 0

if d < d′. The index at which this 0 is present may reveal the day of

the year on which the user was born. This can be easily prevented

by generating a random permutation of the vector denc at TPS in

Algorithm 4. The nature of this permutation can be similar to the

randomization of the vector in the biometric comparison algorithm,

as explained above. As in the case of the Euclidean distance-vector,

this step will hide the information leaked from the specific index

position of a 0 in our vector.

– In the case when y> y′, this vector contains a contiguous range of in-

dices having the value 0 such that the length of this range is y−y′. As

with the vector temp1, these 0s can be used to determine the user’s

year of birth. We cannot use the rotate-and-add strategy to hide this

vector, as these operations decrease the number of 0s, which may

change the query output. An alternate rotate-and-multiply strategy

may be used here, where the vector may be multiplied by a randomly

rotated version of itself repeatedly. While this strategy would be ef-

fective in preventing the year-of-birth leakage from this vector, it is

highly impractical. Each multiplication operation would need to be

followed by an expensive ciphertext relinearization, and would also

45

consume the finite noise budget of our ciphertexts.

6.3 Alternate Libraries

6.3.1 Pallier Cryptosystem

The Pallier cryptosystem is a partially homomorphic (PHE) scheme that supports

homomorphic integer addition. It is the most lightweight and efficient HE scheme,

being able to encrypt and decrypt 32-bit integers in 18 milliseconds, and carry out a

homomorphic addition in < 0.1 milliseconds [58]. This has made it a suitable can-

didate for many real-world applications, including biometric verification [30, 32, 33].

However, this cryptosystem is unsuitable for our architecture for the following reasons:

• Being only additively homomorphic, it is not possible to compute the Euclidean

distance between two vectors in a purely encrypted fashion. Existing schemes for

biometric verification either use other, less accurate, distance metrics or make one

of the vectors available in clear. Since our model involves only communicating

with the TPS in ciphertext, it becomes impossible for us to compute Euclidean

distance while still retaining all of our security guarantees.

• Our age comparison circuit involves multiplications. While it may be possible to

design a comparison algorithm for age using purely additions, it would most likely

require a higher degree of processing after decryption at CS. This goes directly

against our objective of keeping CS involvement beyond decryption minimum.

6.3.2 TFHE

TFHE [6] is a fast, open-source FHE library that allows for the homomorphic eval-

uation of binary gates. Being fully homomorphic, all of our algorithms are imple-

46

mentable using TFHE. The library is also the fastest FHE library, requiring only 13

milliseconds per binary gate. However, in the 128-bit security setting, TFHE expands

1-bit of plaintext 2016 bytes as ciphertext. This means that each user record requires

165 MB of storage in the database. Furthermore, since only ciphertext messages are

exchanged between CS, TPS, and SP, this also makes this ciphertext sizes impractical

due to network bandwidth limitations.

6.3.3 Palisade/HElib

Palisade and HElib are other FHE libraries that implement the BFV FHE scheme.

Of these Palisade, after limited experimentation, offers similar ciphertext expansion

and gate evaluation times to MS SEAL, and could be a suitable replacement. However,

the rotation operations in Palisade are not as robust as MS SEAL, making SEAL the

better choice for our algorithms. HELib is a lightweight implementation of BGV/BFV

and is written in the C programming language. Its low-level implementation makes

this library highly portable, and it offers similar gate-evaluation performance as SEAL

[58]. However, its decryption operation is nearly three times slower, which is non-ideal

for reducing CS load. Furthermore, HElib requires sophisticated manual parameter

selection for optimal performance, which makes it highly impractical.

47

CHAPTER 7

CONCLUSIONS

This thesis presents a practical, privacy-preserving digital identification protocol

targeted at poorer economies. Our protocol aims to make it possible to deploy a national

digital ID system without the need for a large initial investment. The protocol works

on an outsourced computation model, where we delegate the bulk of our storage and

computation needs to a potentially untrustworthy third party. The role of a trusted

central server is not entirely eliminated, but by keeping CS involvement at a minimum

we can minimize the initial investment needed to set up the system.

We use Microsoft SEAL Fully Homomorphic Encryption (FHE) library to outsource

our computation. We describe and prove algorithms for carrying out identity queries us-

ing SEAL - matching demographic or biometric data, or comparing encrypted user age

against any threshold. We further show how these algorithms can be designed to make

CS processing query agnostic. Our scheme is secure against a semi-honest TPS, and

we present countermeasures against leakage-based attacks. Our experiments show that

each query can be executed in under 0.3 seconds, and needs < 5 milliseconds of pro-

cessing at CS. This makes the presented scheme fast enough for real-world deployment.

For future work, it will be interesting to design a digital ID verification protocol

where the role of (a fully trusted) CS is only during the enrollment of users. Secure

Multi-Party Computation (MPC)-based protocols could provide a practical solution to

48

this problem assuming the existence of two or more non-colluding TPS (note that we

need to minimize the role of CS, so it is best to avoid computation and communication

load on it). Another practical concern in many developing countries is the availability

of reliable Internet services. Hence, it will be useful to develop protocols that make

very limited or no use of communication between entities, particularly, from/to SP. A

solution for the latter problem could potentially make use of tamper-resistant hardware,

thereby, increasing the cost of deployment and maintenance.

49

Bibliography

[1] What is AADHAR? https://uidai.gov.in/my-aadhaar/about-your-

aadhaar.html, . Accessed: 2022-03-07.

[2] Modular Open Source Identity Platform (MOSIP). https://mosip.io, . Ac-

cessed: 2022-03-07.

[3] The open-source, identity platform MOSIP hits a new milestone.

https://medium.com/omidyar-network/the-open-source-identity-

platform-mosip-hits-a-new-milestone/-ff9137610bed, . Accessed:

2022-03-07.

[4] Rs 500, 10 minutes, and you have access to billion Aadhaar details.

https://www.tribuneindia.com/news/archive/nation/rs-500-10-

minutes-and-you-have-access-to-billion-aadhaar-details-523361, .

Accessed: 2022-03-07.

[5] Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic

encryption. Cryptology ePrint Archive, Report 2012/144, 2012. https://ia.

cr/2012/144.

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Iz-

abachène. TFHE: Fast fully homomorphic encryption library, August 2016.

https://tfhe.github.io/tfhe/.

50

[7] Marta Gomez-Barrero, Emanuele Maiorana, Javier Galbally, Patrizio Campisi,

and Julian Fierrez. Multi-biometric template protection based on homomorphic

encryption. Pattern Recognition, 67:149–163, 2017. ISSN 0031-3203. doi: https:

//doi.org/10.1016/j.patcog.2017.01.024. URL https://www.sciencedirect.

com/science/article/pii/S0031320317300249.

[8] Yang Yang, Xindi Huang, Ximeng Liu, Hongju Cheng, Jian Weng, Xiangyang

Luo, and Victor Chang. A comprehensive survey on secure outsourced com-

putation and its applications. IEEE Access, 7:159426–159465, 2019. doi:

10.1109/ACCESS.2019.2949782.

[9] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Rug-

gero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo

Piuri, Alessandro Piva, and Fabio Scotti. A privacy-compliant fingerprint recogni-

tion system based on homomorphic encryption and fingercode templates. In 2010

Fourth IEEE International Conference on Biometrics: Theory, Applications and

Systems (BTAS), pages 1–7, 2010. doi: 10.1109/BTAS.2010.5634527.

[10] Zihao Shan, Kui Ren, Marina Blanton, and Cong Wang. Practical secure compu-

tation outsourcing: A survey. ACM Comput. Surv., 51(2), feb 2018. ISSN 0360-

0300. doi: 10.1145/3158363. URL https://doi.org/10.1145/3158363.

[11] Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from ho-

momorphic encryption. In Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security, CCS ’17, page 1243–1255, New York,

NY, USA, 2017. Association for Computing Machinery. ISBN 9781450349468.

doi: 10.1145/3133956.3134061. URL https://doi.org/10.1145/3133956.

3134061.

[12] Keith Frikken. Privacy-preserving set union. In Jonathan Katz and Moti Yung,

editors, Applied Cryptography and Network Security, pages 237–252, Berlin,

51

Heidelberg, 2007. Springer Berlin Heidelberg. ISBN 978-3-540-72738-5. doi:

10.1007/978-3-540-72738-5 16.

[13] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set

operations. Cryptology ePrint Archive, Report 2016/108, 2016. https://ia.

cr/2016/108.

[14] Arisa Tajima, Hiroki Sato, and Hayato Yamana. Outsourced private set intersec-

tion cardinality with fully homomorphic encryption. In 2018 6th International

Conference on Multimedia Computing and Systems (ICMCS), pages 1–8, 2018.

doi: 10.1109/ICMCS.2018.8525881.

[15] Dung Hoang Duong, Pradeep Kumar Mishra, and Masaya Yasuda. Efficient secure

matrix multiplication over lwe-based homomorphic encryption. Tatra Mountains

Mathematical Publications, 67(1):69–83, September 2016. ISSN 1210-3195. doi:

10.1515/tmmp-2016-0031. Publisher Copyright: © 2016 Mathematical Institute,

Slovak Academy of Sciences.

[16] Jarin Firose Moon, Shamminuj Aktar, and M. M. A. Hashem. Securely outsourc-

ing large scale eigen value problem to public cloud. 2015 18th International Con-

ference on Computer and Information Technology (ICCIT), pages 490–494, 2015.

[17] Valeria Nikolaenko, Stratis Ioannidis, Udi Weinsberg, Marc Joye, Nina Taft,

and Dan Boneh. Privacy-preserving matrix factorization. In ACM Confer-

ence on Computer and Communications Security, pages 801–812, 2013. doi:

10.1145/2508859.2516751.

[18] Haomiao Yang, Weichao He, Qixian Zhou, and Hongwei Li. Efficient and secure

outsourced linear regression. In Algorithms and Architectures for Parallel Pro-

cessing, pages 89–102. Springer International Publishing, 2018. doi: 10.1007/

978-3-030-05057-3 7. URL https://doi.org/10.1007/978-3-030-05057-

3_7.

52

[19] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan Boneh, and

Nina Taft. Privacy-preserving ridge regression on hundreds of millions of records.

pages 334–348, 05 2013. ISBN 978-1-4673-6166-8. doi: 10.1109/SP.2013.30.

[20] Jung Cheon, Duhyeong Kim, Yongdai Kim, and Yongsoo Song. Ensemble

method for privacy-preserving logistic regression based on homomorphic encryp-

tion. IEEE Access, PP:1–1, 08 2018. doi: 10.1109/ACCESS.2018.2866697.

[21] Thore Graepel, Kristin Lauter, and Michael Naehrig. Ml confidential: Machine

learning on encrypted data. In Taekyoung Kwon, Mun-Kyu Lee, and Daesung

Kwon, editors, Information Security and Cryptology – ICISC 2012, pages 1–21,

Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. ISBN 978-3-642-37682-5.

doi: 10.1007/978-3-642-37682-5 1.

[22] Raphael Bost, Raluca A. Popa, Stephen Tu, and Shafi Goldwasser. Machine learn-

ing classification over encrypted data. IACR Cryptol. ePrint Arch., 2014:331,

2015. doi: 10.14722/ndss.2015.23241.

[23] B. B. Gupta, Shingo Yamaguchi, Zhiyong Zhang, and Konstantinos E. Psannis.

Guest editorial: Recent advances on security and privacy of multimedia big data

in the critical infrastructure. Multimedia Tools Appl., 77(23):31517–31524, dec

2018. ISSN 1380-7501. doi: 10.1007/s11042-018-6426-2. URL https://doi.

org/10.1007/s11042-018-6426-2.

[24] Francisco-Javier González-Serrano, Adrián Amor-Martı́n, and Jorge Casamayón-

Antón. Supervised machine learning using encrypted training data. International

Journal of Information Security, 17(4):365–377, June 2017. doi: 10.1007/s10207-

017-0381-1. URL https://doi.org/10.1007/s10207-017-0381-1.

[25] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin E. Lauter,

and Michael Naehrig. Crypto-nets: Neural networks over encrypted data. CoRR,

53

abs/1412.6181, 2014. doi: 10.48550/arXiv.1412.6181. URL http://dblp.uni-

trier.de/db/journals/corr/corr1412.html#XieBFGLN14.

[26] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. Cryptodl: Deep neu-

ral networks over encrypted data, 2017. URL https://arxiv.org/abs/1711.

05189.

[27] Chao-Yung Hsu, Chun-Shien Lu, and Soo-Chang Pei. Image feature extraction

in encrypted domain with privacy-preserving sift. IEEE Transactions on Image

Processing, 21(11):4593–4607, 2012. doi: 10.1109/TIP.2012.2204272.

[28] Dongmei Li, Xiaolei Dong, Zhenfu Cao, and Haijiang Wang. Privacy-preserving

outsourced image feature extraction. J. Inf. Secur. Appl., 47(C):59–64, aug 2019.

ISSN 2214-2126. doi: 10.1016/j.jisa.2019.03.020. URL https://doi.org/10.

1016/j.jisa.2019.03.020.

[29] Haomiao Yang, Yunfan Huang, Yong Yu, Mingxuan Yao, and Xiaosong Zhang.

Privacy-preserving extraction of HOG features based on integer vector homomor-

phic encryption. In Information Security Practice and Experience, pages 102–

117. Springer International Publishing, 2017. doi: 10.1007/978-3-319-72359-4 6.

URL https://doi.org/10.1007/978-3-319-72359-4_6.

[30] Marta Gomez-Barrero, Emanuele Maiorana, Javier Galbally, Patrizio Campisi,

and Julian Fierrez. Multi-biometric template protection based on homomorphic

encryption. Pattern Recognition, 67, 01 2017. doi: 10.1016/j.patcog.2017.01.024.

[31] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In Jacques Stern, editor, Advances in Cryptology — EUROCRYPT ’99,

pages 223–238, Berlin, Heidelberg, 1999. Springer Berlin Heidelberg. ISBN 978-

3-540-48910-8. doi: 10.1007/3-540-48910-X 16.

[32] Mauro Barni, Tiziano Bianchi, Dario Catalano, Mario Di Raimondo, Rug-

gero Donida Labati, Pierluigi Failla, Dario Fiore, Riccardo Lazzeretti, Vincenzo

54

Piuri, Alessandro Piva, and Fabio Scotti. A privacy-compliant fingerprint recogni-

tion system based on homomorphic encryption and fingercode templates. In 2010

Fourth IEEE International Conference on Biometrics: Theory, Applications and

Systems (BTAS), pages 1–7, 2010. doi: 10.1109/BTAS.2010.5634527.

[33] Ferhat Ozgur Catak, Sule Yildirim Yayilgan, and Mohamed Abomhara. A privacy-

preserving fully homomorphic encryption and parallel computation based biomet-

ric data matching, 07 2020.

[34] Julien Bringer, Herve Chabanne, Melanie Favre, Alain Patey, Thomas Schneider,

and Michael Zohner. GSHADE: Faster Privacy-Preserving Distance Computation

and Biometric Identification . In Proceedings of the 2nd ACM workshop on Infor-

mation hiding and multimedia security - MMSec '14. ACM Press, 2014. doi: 10.

1145/2600918.2600922. URL https://doi.org/10.1145/2600918.2600922.

[35] Siddhant Deshmukh, Henry Carter, Grant Hernandez, Patrick Traynor, and Kevin

Butler. Efficient and secure template blinding for biometric authentication. In

2016 IEEE Conference on Communications and Network Security (CNS), pages

480–488, 2016. doi: 10.1109/CNS.2016.7860539.

[36] Taeyun Kim, Yongwoo Oh, and Hyoungshick Kim. Efficient privacy-preserving

fingerprint-based authentication system using fully homomorphic encryption. Se-

curity and Communication Networks, 2020:4195852, Feb 2020. ISSN 1939-0114.

doi: 10.1155/2020/4195852. URL https://doi.org/10.1155/2020/4195852.

[37] Gizem S. Çetin, Erkay Savaş, and Berk Sunar. Homomorphic sorting with better

scalability. IEEE Transactions on Parallel and Distributed Systems, 32(4):760–

771, 2021. doi: 10.1109/TPDS.2020.3030748.

[38] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-

morphic encryption without bootstrapping. ACM Trans. Comput. Theory, 6(3), jul

55

2014. ISSN 1942-3454. doi: 10.1145/2633600. URL https://doi.org/10.

1145/2633600.

[39] Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations

for bgv and bfv. Proceedings on Privacy Enhancing Technologies, 2021(3):246–

264, 2021. doi: doi:10.2478/popets-2021-0046. URL https://doi.org/10.

2478/popets-2021-0046.

[40] Rafael Torres Moreno, Jesús Garcı́a Rodrı́guez, Cristina Timón López,

Jorge Bernal Bernabe, and Antonio Skarmeta. Olympus: A distributed privacy-

preserving identity management system. In 2020 Global Internet of Things Sum-

mit (GIoTS), pages 1–6, 2020. doi: 10.1109/GIOTS49054.2020.9119663.

[41] Lin You, Qiang Zhu, and Gengran Hu. A novel nizk-based privacy preserving

biometric identification scheme for internet of things. Cryptology ePrint Archive,

Report 2022/460, 2022. https://ia.cr/2022/460.

[42] Hasini Gunasinghe, Ashish Kundu, Elisa Bertino, Hugo Krawczyk, Suresh Chari,

Kapil Singh, and Dong Su. Prividex: Privacy preserving and secure exchange

of digital identity assets. In The World Wide Web Conference, WWW ’19,

page 594–604, New York, NY, USA, 2019. Association for Computing Machin-

ery. ISBN 9781450366748. doi: 10.1145/3308558.3313574. URL https:

//doi.org/10.1145/3308558.3313574.

[43] David Nuñez and Isaac Agudo. Blindidm: A privacy-preserving approach for

identity management as a service. International Journal of Information Security,

13(2):199–215, Apr 2014. ISSN 1615-5270. doi: 10.1007/s10207-014-0230-4.

URL https://doi.org/10.1007/s10207-014-0230-4.

[44] Gaetan Pradel and Chris Mitchell. Privacy-preserving biometric matching using

homomorphic encryption. In L Zhao, N Kumar, R C Hsu, and Z Zou, editors, Pro-

ceedings: 2021 IEEE 20th International Conference on Trust, Security and Pri-

56

vacy in Computing and Communications, TrustCom 2021, Shenyang, China. IEEE

Press, October 2021. ISBN 978-1-6654-1658-0. doi: 10.1109/TrustCom53373.

2021.00079.

[45] SEAL. Microsoft SEAL (release 3.7). https://github.com/Microsoft/SEAL,

September 2021. Microsoft Research, Redmond, WA.

[46] Ron Rothblum. Homomorphic encryption: From private-key to public-key. In

Yuval Ishai, editor, Theory of Cryptography, pages 219–234, Berlin, Heidelberg,

2011. Springer Berlin Heidelberg. ISBN 978-3-642-19571-6. doi: 10.1007/978-

3-642-19571-6 14.

[47] Laurent Fousse, Pascal Lafourcade, and Mohamed Alnuaimi. Benaloh’s dense

probabilistic encryption revisited. In Progress in Cryptology – AFRICACRYPT

2011, volume 6737, 08 2010. ISBN 978-3-642-21968-9. doi: 10.1007/978-3-

642-21969-6 22.

[48] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Commun. ACM, 21(2):120–126, feb 1978.

ISSN 0001-0782. doi: 10.1145/359340.359342. URL https://doi.org/10.

1145/359340.359342.

[49] T. Elgamal. A public key cryptosystem and a signature scheme based on discrete

logarithms. IEEE Transactions on Information Theory, 31(4):469–472, 1985. doi:

10.1109/TIT.1985.1057074.

[50] Shafi Goldwasser and Silvio Micali. Probabilistic encryption; how to play men-

tal poker keeping secret all partial information. In Proceedings of the Fourteenth

Annual ACM Symposium on Theory of Computing, STOC ’82, page 365–377,

New York, NY, USA, 1982. Association for Computing Machinery. ISBN

0897910702. doi: 10.1145/800070.802212. URL https://doi.org/10.1145/

800070.802212.

57

[51] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ci-

phertexts. In Joe Kilian, editor, Theory of Cryptography, pages 325–341, Berlin,

Heidelberg, 2005. Springer Berlin Heidelberg. ISBN 978-3-540-30576-7. doi:

10.1007/978-3-540-30576-7 18.

[52] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings

of the Forty-First Annual ACM Symposium on Theory of Computing, STOC ’09,

page 169–178, New York, NY, USA, 2009. Association for Computing Machinery.

ISBN 9781605585062. doi: 10.1145/1536414.1536440. URL https://doi.

org/10.1145/1536414.1536440.

[53] Yarkın Doröz, Gizem S. Çetin, and Berk Sunar. On-the-fly homomorphic batch-

ing/unbatching. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan, Dan Wal-

lach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and

Data Security, pages 288–301, Berlin, Heidelberg, 2016. Springer Berlin Heidel-

berg. ISBN 978-3-662-53357-4. doi: 10.1007/978-3-662-53357-4 19.

[54] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic en-

cryption for arithmetic of approximate numbers. In Tsuyoshi Takagi and Thomas

Peyrin, editors, Advances in Cryptology – ASIACRYPT 2017, pages 409–437,

Cham, 2017. Springer International Publishing. ISBN 978-3-319-70694-8. doi:

10.1007/978-3-319-70694-8 15.

[55] A.K. Jain, S. Prabhakar, Lin Hong, and S. Pankanti. Fingercode: a filterbank for

fingerprint representation and matching. In Proceedings. 1999 IEEE Computer So-

ciety Conference on Computer Vision and Pattern Recognition (Cat. No PR00149),

volume 2, pages 187–193 Vol. 2, 1999. doi: 10.1109/CVPR.1999.784628.

[56] Lifeng Sha, Feng Zhao, and Xiaoou Tang. Improved fingercode for filterbank-

based fingerprint matching. In Proceedings 2003 International Conference on

58

Image Processing (Cat. No.03CH37429), volume 2, pages II–895, 2003. doi:

10.1109/ICIP.2003.1246825.

[57] Fabian Boemer, Sejun Kim, Gelila Seifu, Fillipe D.M. de Souza, and Vinodh

Gopal. Intel hexl: Accelerating homomorphic encryption with intel avx512-

ifma52. In Proceedings of the 9th on Workshop on Encrypted Computing & Ap-

plied Homomorphic Cryptography, WAHC ’21, page 57–62, New York, NY, USA,

2021. Association for Computing Machinery. ISBN 9781450386562. doi: 10.

1145/3474366.3486926. URL https://doi.org/10.1145/3474366.3486926.

[58] Vasily Sidorov, Ethan Yi Fan Wei, and Wee Keong Ng. Comprehensive per-

formance analysis of homomorphic cryptosystems for practical data processing,

2022. URL https://arxiv.org/abs/2202.02960.

